Second-order particle MCMC for Bayesian parameter inference

نویسندگان

  • Johan Dahlin
  • Fredrik Lindsten
  • Thomas B. Schön
چکیده

We propose an improved proposal distribution in the Particle Metropolis-Hastings (PMH) algorithm for Bayesian parameter inference in nonlinear state space models. This proposal incorporates second-order information about the parameter posterior distribution, which can be extracted from the particle filter already used within the PMH algorithm. The added information makes the proposal scale-invariant, simpler to tune and can possibly also shorten the burn-in phase. The proposed algorithm has a computational cost which is proportional to the number of particles, i.e. the same as the original marginal PMH algorithm. Finally, we provide two numerical examples that illustrates some of the possible benefits of adding the second-order information.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Particle filters and Markov chains for learning of dynamical systems

Sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC) methods provide computational tools for systematic inference and learning in complex dynamical systems, such as nonlinear and non-Gaussian state-space models. This thesis builds upon several methodological advances within these classes of Monte Carlo methods. Particular emphasis is placed on the combination of SMC and MCMC in so c...

متن کامل

Location Reparameterization and Default Priors for Statistical Analysis

This paper develops default priors for Bayesian analysis that reproduce familiar frequentist and Bayesian analyses for models that are exponential or location. For the vector parameter case there is an information adjustment that avoids the Bayesian marginalization paradoxes and properly targets the prior on the parameter of interest thus adjusting for any complicating nonlinearity the details ...

متن کامل

Bayesian parameter estimation in dynamic population model via particle Markov chain Monte Carlo

In nature, population dynamics are subject to multiple sources of stochasticity. State-space models (SSMs) provide an ideal framework for incorporating both environmental noises and measurement errors into dynamic population models. In this paper, we present a recently developed method, Particle Markov Chain Monte Carlo (Particle MCMC), for parameter estimation in nonlinear SSMs. We use one eff...

متن کامل

Bayesian System Identification using Auxiliary Stochastic Dynamical Systems

Bayesian approaches to statistical inference and system identification became practical with the development of effective sampling methods like Markov Chain Monte Carlo (MCMC). However, because the size and complexity of inference problems has dramatically increased, improved MCMC methods are required. Dynamical systems based samplers are an effective extension of traditional MCMC methods. Thes...

متن کامل

Bayesian Multimodel Inference for Geostatistical Regression Models

The problem of simultaneous covariate selection and parameter inference for spatial regression models is considered. Previous research has shown that failure to take spatial correlation into account can influence the outcome of standard model selection methods. A Markov chain Monte Carlo (MCMC) method is investigated for the calculation of parameter estimates and posterior model probabilities f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014